Venom-controlled fibrin architecture revealed by SANS/USANS regulates fibroblast differentiation

Zhao Wang1, Jan Lauko1, Amanda W. Kijas1, Elliot P. Gilbert1,2, Jitendra Mata1, Petri Tuuninen3, and Alan E. Rowan1
1Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia.
2Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, Lucas Heights, NSW, Australia.
3Microscopy Core Facility, Institute of Molecular Biology, Mainz, Germany.

Fibroblast differentiation in wound healing

- Fibroblast-to-myofibroblast differentiation plays a central role in wound healing. Myofibroblast is responsible for wound closure and scar formation [1].
- Both mechanical force and biochemical cue TGF-β1 are needed to trigger the fibroblast differentiation [2].
- Fibrin is the provisional matrix formed after injury, delivering key cues to wound healing. How the biophysical cues (architecture, stiffness, ligand density) of matrices influence fibroblast differentiation is still unknown [3-4].

Snake-venom-controlled fibrin polymerization

- PSVP activates prothrombin to form thrombin. Thrombin then initiates fibrinogen to form the fibrin networks.
- ASVP stabilizes fibrin networks by inhibiting fibrinolysis.
- Fibrin stiffness can be tuned by controlling FXIII/Ca2+-induced crosslinking within the fibres [5].
- However, the architectural properties (pore size, diameter, fibre density, surface areas, etc) cannot be accessed or characterized accurately by traditional methods.

Neutron scattering (combined SANS/USANS)

- Combined SANS/USANS provides a whole range of architectural information of the novel venom-controlled fibrin networks from the internal protofibril, single fibre to the fibrin network.
- 3D fibrin architecture verified by SANS/USANS influences fibroblast differentiation. This is a new method to regulate cellular behaviours and provides a potential tool to achieve the scarless wound healing in adults.

Conclusions

- Combined SANS/USANS provides a whole range of architectural information of the novel venom-controlled fibrin networks from the internal protofibril, single fibre to the fibrin network.
- 3D fibrin architecture verified by SANS/USANS influences fibroblast differentiation. This is a new method to regulate cellular behaviours and provides a potential tool to achieve the scarless wound healing in adults.

6 SANS and USANS images adapted from ANSTO website.
7 Quokka and Kookaburra images from Wallpaperpave.com