

XRF analysis and imaging at XFM using GeoPIXE

Chris Ryan
CSIRO Mineral Resources
May 20, 2021

Workshop at the Australian
Synchrotron

XFM Quantification in GeoPIXE

General approach

- Standardless, fundamental parameters
 - X-ray Yields calculated for a model sample
- Need to know something about sample
 - Thickness, main components
 - · Undetected light elements
- Extend this to imaging
 - · Using the *Dynamic Analysis* method
- Combine all detectors in an array
 - Model yields for each detector separately

- 1. Model X-ray yields Y_i (per unit flux Q)
 - 3. Determine concentration C_i

$$C_i = N_i / (Q^*Y_i)$$

XFM Quantification in GeoPIXE

General approach

- Standardless, fundamental parameters
 - X-ray Yields calculated for a model sample
- Need to know something about sample
 - Thickness, main components
 - · Undetected light elements
- Extend this to imaging
 - · Using the *Dynamic Analysis* method
- Combine all detectors in an array
 - · Model yields for each detector separately

"Angular diversity" of a large array

- Take-off angles to sample normal γ: 14° to 53°
 - Sensitivity to depth within sample
- Azimuthal angle (around beam) φ: 0 to 360°
 - · Probe of internal structure in sample

- 1. Model X-ray yields Y_i (per unit flux Q)
 - 3. Determine concentration C_i

$$C_i = N_i / (Q^*Y_i)$$

2. Measure counts N_i

Dynamic Analysis

"Event mode" spectral deconvolution

How to apply detailed spectrum fitting to imaging?

SXRF (PIXE) Spectrum - linear combination of element spectra.

Linear least squares fit of function f_i to data S_i → solve equations (for each j):

$$\sum_{k} \sum_{i}^{channels} w_{i} \left(\frac{\partial f_{i}}{\partial a_{j}} \right) \left(\frac{\partial f_{i}}{\partial a_{k}} \right) a_{k} = \sum_{i}^{channels} w_{i} \left(\frac{\partial f_{i}}{\partial a_{j}} \right) S_{i}$$

$$\alpha_{jk} \qquad \beta_{ji}$$

for parameters ∂_k (X-ray peak areas ...).

In matrix form:

$$\alpha a = \beta S$$

a matrix transform from spectrum vector *S* to peak area (and background) vector *a*:

$$a = (\alpha^{-1}\beta) S$$

in terms of a matrix $\alpha^{-1}\beta$, which is built from 'shape' functions.

* Ryan, J. Imaging Sys. Tech. 11 (2000) 219 Ryan *et al.*, AIP Proc. 1221 (2010) 9

SXRF (PIXE) Spectrum - linear combination of element spectra.

Peak areas a_k are related to elemental concentration C_k by

$$a_k = (\Omega \varepsilon_k T_k Q). Y_k . C_k$$

 Ω detector solid angle

 ε_k detector efficiency

 T_k filter transmission

Q integrated beam charge/flux

 Y_k X-ray yields (assume uniform composition)

Therefore $\mathbf{a} = (\alpha^{-1}\beta)\mathbf{S}$ leads to a matrix transform from SXRF spectrum \mathbf{S} to concentration vector \mathbf{C} :

$$C = Q^{-1} \Gamma S$$

where the matrix Γ is given by:

$$\Gamma_{ki} = (\Omega \varepsilon_k T_k Y_k)^{-1} \sum_i \alpha^{-1}_{ki} \beta_{ii}$$

Dynamic Analysis method

PIXE (SXRF) Spectrum - linear combination of element

spectra.

... cast as a matrix transformation:

$$C = Q^{-1} \Gamma S$$
Concentration vector

Transform matrix

PIXE and SXRF Imaging:

X-ray event:

Energy 'e'

Position 'x,y'

selects column of matrix $\Gamma \rightarrow$ increments to images at 'x,y'

GeoPIXE software

PIXE and SXRF imaging

- Ryan and Jamieson, NIMB 77 (1993) 203.
- Ryan, J. Imaging Sys. Tech. 11 (2000) 219
- Ryan et al., AIP Proc. 1221 (2010) 9

XFM Quantification in GeoPIXE

General approach

- Standardless, fundamental parameters
- Combine all detectors in an array

Apply to imaging → **Dynamic Analysis**

Accumulate images "event by event"

Further issues

- Correct images for spatially varying sample composition (effects on model yields)
- Track changing beam energy E_b for XANES imaging (the model scatter peaks move)
- Exploit "angular diversity" of a large array

XFM imaging modes in GeoPIXE

2D

- XY full spectral event analysis using DA
 - Image for each element
- XE_b Line XANES, many elements
 - Scan along line for each beam energy E_b

Dynamic Analysis method - XANES

SXRF Spectrum - linear combination of element spectra.

... cast as a matrix transformation:

$$\begin{array}{cccc} C & = & Q^{\text{-}1} \; \Gamma(\mathsf{E}_\mathsf{b}) \, \textbf{S} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

Spectrum vector

XANES Imaging:

X-ray event:

Energy 'e'
Position 'x,y'
Beam energy 'E_b'

 $^{\mathsf{L}}_{\mathsf{b}}'$ selects matrix Γ in stack \rightarrow

'e' selects column of matrix $\Gamma(E_b) \rightarrow$ the increments to images at 'x,y'

one for each beam energy 'E_b'

XFM imaging modes in GeoPIXE

2D

- XY full spectral event analysis using DA
 - Image for each element
- **XE_b** line XANES, many elements
 - Scan along line for each beam energy E_b

3D

- **XY0** Fluorescence Tomography,
 - full XY frames at each θ
- XYE_b XANES stack (for selected element)
 - XY image frames at each beam energy E_b
- XE, Y XANES stack (for selected element)
 - E_b from undulator encoder as second fastest axis

XFM imaging modes in GeoPIXE

2D

- XY full spectral event analysis using DA
 - Image for each element
- **XE_b** line XANES, many elements
 - Scan along line for each beam energy $m{\mathcal{E}}_b$

3D

- **XY0** Fluorescence Tomography,
 - full XY frames at each θ
- XYE_b XANES stack (for selected element)
 - XY image frames at each beam energy E_b
- XE_bY XANES stack (for selected element)
 - E_b from undulator encoder as second fastest axis
- XθE_b XANES Tomography
 - Xθ as fastest axes, stacked by E_b

2D XFM

Cu Fe Compton

XANES Tomography section

0.4 x 0.55 mm; 200 x 275 pixels, 16 min

Cu speciation maintained in Drosophila... James + de Jonge et al.

0.3 mm x 180°, 100 angles; 150 x 100 pixel sinogram, 4.7 minutes per energy x 80 energies Maia detector array "take-off angle diversity"

• Take-off angle range:- y: 14° to 53°

Azimuthal angle range:- φ: 0 to 360°

outer

Maia 384 array: Depth sensitivity and measurement

Depth sensitivity using large detector array

- ✓ Angles from normal range from 13.9 ° to 52.6°
- ✓ Outer detectors "see" more self-absorption
- ✓ Inner detectors "see" deeper particles
- ✓ Ratio "outer" / "inner" → depth measure

Pt L α yields, "outer"/"inner" ratio for Pt particle in olivine at 18.5 keV beam energy

PGM Search: Depth mapping

Three groups of PGMs found in 100 mm² ...

Dunite polished section from Muang Pha intrusion Laos (Godel et al., CSIRO)

Detector array – Depth perception

Pb (inner) Pb (outer) As

Detector array – Depth 1 mm perception Pb (inner) Pb (outer) As Chris Ryan, CSIRO

Detector array: Take-off angle perspectives

Detector array: Take-off angle perspectives

Bottom-left Bottom-right Top

3 angle perspectives

Detector array: Take-off angle perspectives

Bottom-left Bottom-right Top

3 angle perspectives

Detector array: Take-off angle perspectives

Bottom-left Bottom-right Top

Matrix correction of images

Correct images for spatially changing composition

Huge contrasts in major element composition:

Uniform yields no longer valid.

 Can we estimate yields in terms of a mixture of 'end-member' terms?

 C_k is a mix of end-member j compositions P_{ik} :

$$C_k = \sum_j r_j P_{jk}$$

where r_i is the fraction of end-member phase j.

Hence, form end-member images by transforming:

$$r = C P^{-1}$$

Self-absorption dominates XRF/PIXE X-ray yields Y_k → they vary ~inversely with mass absorption.

Therefore, can approximate yields for a mixture by:

$$(Y_k^{\text{mixture}})^{-1} \cong \sum_i r_i (Y_{ik}^{\text{phase}})^{-1}$$

in terms of the yields Y_{ik}^{phase} calculated for the endmembers j.

• Ryan, J. Imaging Sys. Tech. 11 (2000) 219

end-members (r)

Cu

Villamaninite (CuS₂)

Fe

Pyrite (FeS₂)

Enargite (Cu₃AsS₄)

 C_k is a mix of end-member j compositions P_{ik} :

$$C_k = \sum_j r_j P_{jk}$$

where r_i is the fraction of end-member phase j.

Hence, form end-member images by transforming:

$$r = C P^{-1}$$

Self-absorption dominates XRF/PIXE X-ray yields Y_k \rightarrow they vary \sim inversely with mass absorption.

Therefore, can approximate yields for a mixture by:

$$(Y_k^{\text{mixture}})^{-1} \cong \sum_j r_j (Y_{jk}^{\text{phase}})^{-1}$$

in terms of the yields Y_{jk}^{phase} calculated for the end-members j.

Hence, correct images (pixel by pixel) by:

$$Y_k$$
 original / Y_k mixtur

 C_k is a mix of end-member j compositions P_{ik} :

$$C_k = \sum_j r_j P_{jk}$$

where r_j is the fraction of end-member phase j. Hence, form end-member images by transforming:

$$r = C P^{-1}$$

Self-absorption dominates XRF/PIXE X-ray yields Y_k \rightarrow they vary \sim inversely with mass absorption.

Therefore, can approximate yields for a mixture by:

$$(Y_k^{\text{mixture}})^{-1} \cong \sum_j r_j (Y_{jk}^{\text{phase}})^{-1}$$

in terms of the yields Y_{jk}^{phase} calculated for the end-members j.

Hence, correct images (pixel by pixel) by:

$$Y_k$$
 original / Y_k mixture

Cu

As

31.9%

45 ppm

32.8%

Matrix correction of images

A new approach ...

Can we correct for spatial variation in:

- Sample composition?
- X-ray relative intensities?
- Background?

Can fit isolated phases → build MPDA from linear combination of phase terms

Approach:

- Project phase maps
- Extract spectra for representative end-members
- Fit spectra to build a DA matrix for each phase.
- Can we combine these to better re-process data?

cov coll mill

silicate

bar uran py

Use per phase:

- ✓ Correct composition → SXRF yields
- Correct X-ray line relative intensities
- Correct background shape
- ✓ These flow into DA matrices

Can fit isolated phases → build MPDA from linear combination of phase terms

Can fit isolated phases → build MPDA from linear combination of phase terms

 $\Gamma \propto 1/Y$. Hence, this is analogous to the phase weighted inverse yields.

Build Images

For each element k image, accumulate for each event (exy):

$$\delta C_k = \frac{\sum_{j} \Gamma_{kj}(e).phase_j(xy)}{\sum_{i} phase_i(xy)}$$

Approach:

- Project phase maps
- Extract spectra for representative end-members
- Fit spectra to build a DA matrix for each phase.
- Combine these to better re-process data

Γ Matrix stack

one for each 'phase' j

Comparisons to EMP point analyses

(z+)

with each DA matrix Γ for phase j weighted by 'phase' fraction.

Can fit isolated phases → build MPDA from linear combination of phase terms

Approach:

- Project phase maps
- Extract spectra for representative end-members
- Fit spectra to build a DA matrix for each phase.
- Combine these to re-process data
- Reconstruct spectra from phase terms

Reconstruct spectrum overlay

Terms:

- region 'conc' C_k
- 'pure' element spectra
- phase averaged yields $\langle Y \rangle_k$

 $\frac{Q.\sum_{kj} f_k.\langle Y\rangle_k C_k.pure_{kj}.phase_j(region)}{\sum_j phase_j(region)}$

Thank you

Phone: (0432) 284 083 Email: Chris.Ryan@csiro.au

Chris Ryan
CSIRO Mineral Resources

Explore GeoPIXE demo data and "worked examples" on ASCI ...

The Team

CSIRO Mineral Resources

- Chris Ryan
- Robin Kirkham
- · Gareth Moorhead
- Paul Dunn
- Murray Jensen
- David Parry
- Louise Fisher
- Mark Pearce
- Rob Hough

Australian Synchrotron

- · David Paterson
- Martin de Jonge
- Daryl Howard
- Simon James

NSLS/BNL

- Pete Siddons
- Tony Kuczewski
- · Arthur Zhi Yong Li
- Gianluigi De Geronimo
- Don Pinelli
- Angelo Dragone
- Don Elliott
- Rolf Beuttenmuller
- Paul O'Connor

University of Melbourne

- Jamie Laird
- · Roland Szymanski
- Frank Rudzik
- David Jamieson

CSIRO Manufacturing

- Steve Hogan
- Peter Davies
- Andrew Faulks
- · Roshan Dodanwela

Petra III

- Ulrike Bösenberg
- Katherine Spiers
- Jan Garrevoet
- Matthias Alfeld
- Gerald Falkenberg

CHESS

- Arthur Woll
- Louisa Smieska

Users (Maia data)

- Anais Pages
- Margaux Le Vaillant
- Steve Barnes
- Louise Schoneveld
- Sam Spinks
- Belinda Godel
- Robert Thorne
- Raphael Baumgartner
- Tara Djokic
- Martin J. Van Kranendonk
- Mel Lintern
- Antony Van der Ent
- Heidi Berkenbosch
- Enzo Lombi
- Katie Dyl
- Erica Donner
- Phil Bland
- Barbara Etschmann
- Jöel Brugger
- Peter Kopittke
- Aaron Stewart

