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XFM Quantification in GeoPIXE

1. Model X-ray yields Yi (per unit flux Q)

Ci = Ni / (Q*Yi)

3. Determine concentration  Ci

2. Measure counts Ni

Fe

General approach

• Standardless, fundamental parameters

• X-ray Yields calculated for a model sample

• Need to know something about sample

• Thickness, main components

• Undetected light elements

• Extend this to imaging

• Using the Dynamic Analysis method

• Combine all detectors in an array

• Model yields for each detector separately
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XFM Quantification in GeoPIXE

1. Model X-ray yields Yi (per unit flux Q)

Ci = Ni / (Q*Yi)

3. Determine concentration  Ci

2. Measure counts Ni

General approach

• Standardless, fundamental parameters

• X-ray Yields calculated for a model sample

• Need to know something about sample

• Thickness, main components

• Undetected light elements

• Extend this to imaging

• Using the Dynamic Analysis method

• Combine all detectors in an array

• Model yields for each detector separately

“Angular diversity” of a large array

• Take-off angles to sample normal  γ:  14° to 53°

• Sensitivity to depth within sample

• Azimuthal angle (around beam)  φ:  0 to 360°

• Probe of internal structure in sample

Maia



2020 X-ray Vision: High definition imaging and buried rare phase detection using XRF, PIXE and the Maia detector array Chris Ryan, CSIRO

Dynamic Analysis

“Event mode” spectral deconvolution
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SXRF (PIXE) Spectrum - linear combination of element spectra.

Linear least squares fit of function fi to data Si

→ solve equations (for each j):

ajk bji

for parameters ak (X-ray peak areas …).
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In matrix form:

aa =  bS

a matrix transform from spectrum vector S to peak area (and 
background) vector a:

a =  (a-1b) S

in terms of a matrix a-1b, which is built from ‘shape’ functions.

Maia 384 spectrum

How to apply detailed spectrum fitting to imaging?
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Therefore  a = (a-1b)S leads to a matrix transform from SXRF 
spectrum S to concentration vector C :

C =  Q-1 GS

where the matrix G is given by:

Gki =  (WekTkYk)
-1 Sj a

-1
kj bji

SXRF (PIXE) Spectrum - linear combination of element spectra.

Peak areas ak are related to elemental concentration Ck by

ak =  (WekTkQ). Yk . Ck

W detector solid angle

ek detector efficiency

Tk filter transmission

Q integrated beam charge/flux

Yk X-ray yields (assume uniform composition)

Dynamic Analysis method

Maia 384 spectrum

* Ryan, J. Imaging Sys. Tech. 11 (2000) 219 

Ryan et al., AIP Proc. 1221 (2010) 9  
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… cast as a matrix transformation:

C = Q-1 G S

Spectrum vector

Transform matrix

Concentration vector

GeoPIXE software

PIXE and SXRF imaging

PIXE and SXRF Imaging:

X-ray event: Energy 'e‘
Position 'x,y‘

selects column of matrix G →
increments to images at 'x,y'

Cd

Zn

Cu

Fe

As

Y

X

e

G matrix

• Ryan and Jamieson, NIMB 77 (1993) 203.

• Ryan, J. Imaging Sys. Tech. 11 (2000) 219 

• Ryan et al., AIP Proc. 1221 (2010) 9  

PIXE (SXRF) Spectrum - linear combination of element 
spectra.

Dynamic Analysis method
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Further issues

• Correct images for spatially varying sample 

composition (effects on model yields)

• Track changing beam energy Eb for XANES 

imaging (the model scatter peaks move)

• Exploit “angular diversity” of a large array

Apply to imaging → Dynamic Analysis

• Accumulate images “event by event”

XFM Quantification in GeoPIXE

General approach

• Standardless, fundamental parameters

• Combine all detectors in an array

Ca Sr Fe

Se Ni S

Zn U Y

Hg Cu V

1 mm
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XFM imaging modes in GeoPIXE

2D

• XY – full spectral event analysis using DA

• Image for each element

• XEb – Line XANES, many elements 

• Scan along line for each beam energy Eb

Ca Sr Fe Zn U Y

EbX map

Line XANES:

DA matrix model should follow 

changing beam energy Eb

(coming soon)
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… cast as a matrix transformation:

C = Q-1 G(Eb) S

Spectrum vector

Transform matrix

Concentration vector

XANES Imaging:

X-ray event: Energy 'e‘
Position 'x,y‘
Beam energy ‘Eb’

‘Eb’ selects matrix G in stack →

‘e’  selects column of matrix G(Eb) → the 

increments to images at 'x,y'

SXRF Spectrum - linear combination of element 
spectra.

Dynamic Analysis method - XANES

e

G Matrix stack

e
e

e
e

e
e

one for each beam energy ‘Eb’

Ti V Cr

Mn

Fe elastic

Compton
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XFM imaging modes in GeoPIXE

3D

• XYθ – Fluorescence Tomography, 

• full XY frames at each θ

• XYEb – XANES stack (for selected element)

• XY image frames at each beam 

energy Eb

• XEbY – XANES stack (for selected element)

• Eb from undulator encoder as second 

fastest axis

As III

As V

2D

• XY – full spectral event analysis using DA

• Image for each element

• XEb – line XANES, many elements 

• Scan along line for each beam energy Eb
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XFM imaging modes in GeoPIXE

3D

• XYθ – Fluorescence Tomography, 

• full XY frames at each θ

• XYEb – XANES stack (for selected element)

• XY image frames at each beam 

energy Eb

• XEbY – XANES stack (for selected element)

• Eb from undulator encoder as second 

fastest axis

2D

• XY – full spectral event analysis using DA

• Image for each element

• XEb – line XANES, many elements 

• Scan along line for each beam energy Eb

• XθEb – XANES Tomography

• Xθ as fastest axes, stacked by Eb

Cu Fe

Compton

0.4 x 0.55 mm; 200 x 275 

pixels, 16 min

2D XFM

0.3 mm x 180°, 100 

angles; 150 x 100 pixel 

sinogram, 4.7 minutes per 

energy x 80 energies

XANES Tomography section

Cu-I

Cu-II

Cu speciation maintained 
in Drosophila…

James + de Jonge et al.
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Maia detector array

“take-off angle diversity”

• Take-off angle range:- γ:  14° to 53°

• Azimuthal angle range:- φ:  0 to 360°
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beam

sample

detector array

inner
outer

Lintern et al., Nature Communications 4, 2274

10 mm

outer

inner

Depth mapping
Gold precipitates in leaves
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Lintern et al., Nature Communications 4, 2274

beam

sample

detector array

inner
outer

outer

inner

Depth mapping
Gold precipitates in leaves

10 mm

Red

Green

1 mm

1 mm

deep

shallow
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Pt Lα yields, “outer”/”inner” ratio for Pt particle in olivine at 

18.5 keV beam energy

• Depth sensitivity using large detector array

✓Angles from normal range from 13.9 ° to 52.6°

✓Outer detectors “see” more self-absorption

✓ Inner detectors “see” deeper particles

✓Ratio “outer” / “inner”  → depth measure

Maia 384 array:
Depth sensitivity and measurement



Dunite polished section from Muang Pha intrusion Laos (Godel et al., CSIRO)

Three groups of PGMs found in 100 mm2 …

20 x 5 mm, 10002 x 2502 pixels, 0.49 ms

PGM Search:
Depth mapping

Cr Fe Mn1 mm
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Three groups of PGMs found in 100 mm2 …

20 x 5 mm, 10002 x 2502 pixels, 0.49 ms

PGM Search:
Depth mapping

Cr Fe Mn

200 µmPt Fe Mn

100 µm

Pt Fe Mn

Pt L lines

1 mm



Dunite polished section from Muang Pha intrusion Laos

20 x 5 mm, 10002 x 2502 pixels, 0.49 ms

PGM Search:
Depth mapping

Cr Fe Mn

200 µmPt Fe Mn

100 µm

Pt Fe Mn

1 mm

Pt Fe Mn

100 µm



Dunite polished section from Muang Pha intrusion Laos

20 x 5 mm, 10002 x 2502 pixels, 0.49 ms

PGM Search:
Depth mapping

Cr Fe Mn

200 µmPt Fe Mn

100 µm

Pt Fe Mn

1 mm

Pt Fe Mn

100 µm

10 µm

“inner” Red
“outer” Green

23 ± 6 µm

33 ± 11 µm

44 ± 8 µm 8 ± 11 µm

66 ± 10 µm



Harnessing the angular diversity of a Maia detector array for PIXE imaging Chris Ryan, CSIRO

log(As) S Zn

1 mm

Black smoker chimney conduit thin-section, PACMANUS seafloor hydrothermal field, study by Siyu Hu et al., CSIRO Maia-PIXE 

images (#664): 3500 x 2197 pixels @ 8 ms; 7.0 x 5.0 mm2, 3 MeV protons, 122 µC, (see Laird et al., NIMB 449 (2019) 11-16)
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log(As) S Znlog(As) sqrt(Pb) Zn

1 mm

Black smoker chimney conduit thin-section, PACMANUS seafloor hydrothermal field, study by Siyu Hu et al., CSIRO Maia-PIXE 

images (#664): 3500 x 2197 pixels @ 8 ms; 7.0 x 5.0 mm2, 3 MeV protons, 122 µC, (see Laird et al., NIMB 449 (2019) 11-16)

Dufrenoysite Pb2As2S5
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Pb (inner) Pb (outer) As

Detector array – Depth 
perception

1 mm
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Pb (inner) Pb (outer) As

Detector array – Depth 
perception

1 mm
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Detector array – Depth perception

Fe (inner) Fe (outer) S

23 µm

5.8 µm

surface

10.2 µm

10.8 µm

19.5 µm

17.2 µm

uncertainties  δd ~ 1.0 - 1.9 µm

Depths to Fe minerals

1 mm



Maia Mapper: High Definition Drill Core Scale XRF Mapping in ARCF Chris Ryan, CSIRO

Detector array: Take-off angle perspectives

Right

…

Group detectors by azimuthal angle around array …

Top-left Top Top-right Right Bot-right

Bremsstrahlung background intensity

1 mm
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Top-leftBottom

Right

1 mm
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Top-leftBottomAll detectors

RightMax

1 mm



Maia Mapper: High Definition Drill Core Scale XRF Mapping in ARCF Chris Ryan, CSIRO

3 angle perspectives

Red Green

Blue

Zn

Detector array: Take-off 
angle perspectives

Bottom-left Bottom-right Top
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3 angle perspectives

Red Green

Blue

Zn

Detector array: Take-off 
angle perspectives

Bottom-left Bottom-right Top

Ba L
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3 angle perspectives

Red Green

Blue

Zn

Detector array: Take-off 
angle perspectives

Bottom-left Bottom-right Top

Ba L

As

As



Super HD SXRF Element Imaging: A Catalyst for Innovation Chris Ryan, CSIRO

Matrix correction of images

Correct images for spatially changing composition
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Huge contrasts in major element 
composition:

Uniform yields no longer valid.

Yield Correction of Images

Pure FeS2 Pure CuS2

FeS2-CuS2 solid-solution

Yields vs CuS2 fraction

• Can we estimate yields in terms of a 
mixture of ‘end-member’ terms?

FeCu



XRF analysis and imaging at XFM using GeoPIXE Chris Ryan, CSIRO

Pyrite (FeS2)Fe

Cu Villamaninite (CuS2)

Enargite (Cu3AsS4)As

Elements (C) end-members (r)Yield Correction of Images

• Ryan, J. Imaging Sys. Tech. 11 (2000) 219 

Ck is a mix of end-member j compositions Pjk:

Ck = Sj rj Pjk

where rj is the fraction of end-member phase j. 

Hence, form end-member images by transforming:

r =  C P-1

Self-absorption dominates XRF/PIXE X-ray yields Yk

→ they vary ~inversely with mass absorption.

Therefore, can approximate yields for a mixture by:

(Yk
mixture)-1  Sj rj (Yjk

phase)-1

in terms of the yields Yjk
phase calculated for the end-

members j.



XRF analysis and imaging at XFM using GeoPIXE Chris Ryan, CSIRO

Pure FeS2 Pure CuS2

Full integral
yields

Yk
mixture

FeS2-CuS2 solid-solution

Yield Correction of Images

Hence, correct images (pixel by pixel) by:

Yk
original /  Yk

mixture

Ck is a mix of end-member j compositions Pjk:

Ck = Sj rj Pjk

where rj is the fraction of end-member phase j. 

Hence, form end-member images by transforming:

r =  C P-1

Self-absorption dominates XRF/PIXE X-ray yields Yk

→ they vary ~inversely with mass absorption.

Therefore, can approximate yields for a mixture by:

(Yk
mixture)-1  Sj rj (Yjk

phase)-1

in terms of the yields Yjk
phase calculated for the end-

members j.
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Yield Correction of Images

Hence, correct images (pixel by pixel) by:

Yk
original /  Yk

mixture

Ck is a mix of end-member j compositions Pjk:

Ck = Sj rj Pjk

where rj is the fraction of end-member phase j. 

Hence, form end-member images by transforming:

r =  C P-1

Fe

Cu

DA EMP 

Fe 15.8% 15.4%
Cu 31.9% 32.8%

As 45 ppm -

Cu

initial

Fe 44%
Cu 1.6%
As 250
Se 170
Ag 95
Pb 1050

(ppm)

Self-absorption dominates XRF/PIXE X-ray yields Yk

→ they vary ~inversely with mass absorption.

Therefore, can approximate yields for a mixture by:

(Yk
mixture)-1  Sj rj (Yjk

phase)-1

in terms of the yields Yjk
phase calculated for the end-

members j.

• Ryan, J. Imaging Sys. Tech. 11 (2000) 219 



Super HD SXRF Element Imaging: A Catalyst for Innovation Chris Ryan, CSIRO

Matrix correction of images

A new approach …

Can we correct for spatial variation in:

• Sample composition?

• X-ray relative intensities?

• Background?
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Dynamic Analysis method → Multi-Phase  (MPDA)

Ca Sr Fe

cov coll mill

bar uran pysilicate

Use per phase:

✓ Correct composition → SXRF 

yields

✓ Correct X-ray line relative 

intensities

✓ Correct background shape

✓ These flow into DA matrices

Approach:

• Project phase maps

• Extract spectra for representative 

end-members

• Fit spectra to build a DA matrix 

for each phase.

• Can we combine these to 

better re-process data?

Can fit isolated phases → build MPDA from linear combination of phase terms
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Ca Sr Fe

Dynamic Analysis method → Multi-Phase  (MPDA)

coll

Ca

mill

Ni

py

Fe

cov

Cu

uran

U

Approach:

• Project phase maps

• Extract spectra for 

representative end-members

• Fit spectra to build a DA matrix 

for each phase.

• Combine these to better           

re-process data 

Can fit isolated phases → build MPDA from linear combination of phase terms
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Dynamic Analysis method → Multi-Phase  (MPDA) 2nd pass

Ca Sr Fe Approach:

• Project phase maps

• Extract spectra for 

representative end-members

• Fit spectra to build a DA matrix 

for each phase.

• Combine these to better         

re-process data 

Can fit isolated phases → build MPDA from linear combination of phase terms

e

G Matrix stack

e
e

e
e

e
e

one for each ‘phase’ j

with each DA matrix Γ for phase j weighted by ‘phase’ fraction.

Build Images

For each element k  image, accumulate for each event 
(exy):

Γ ∝ 1/Y. Hence, this is analogous to the phase 

weighted inverse yields.

Comparisons to 

EMP point analyses

Le Vaillant et al., CSIRO

0

0.5

1

1.5

2

2.5

initial

Correct2

MPDA
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Ca Sr Fe

Normal (single phase) DA Multi-phase (7 phases) MPDA

Approach:

• Project phase maps

• Extract spectra for 

representative end-members

• Fit spectra to build a DA matrix 

for each phase.

• Combine these to re-process 

data 

• Reconstruct spectra from phase 

terms

Dynamic Analysis method → Multi-Phase  (MPDA)
Can fit isolated phases → build MPDA from linear combination of phase terms

Normal (single phase) DA Multi-phase (7 phases) MPDA

Reconstruct spectrum overlay

Terms: 

• region ‘conc’ Ck

• ‘pure’ element spectra

• phase averaged yields <Y>k



Thank you

Chris Ryan

CSIRO Mineral Resources

Phone: (0432) 284 083

Email: Chris.Ryan@csiro.au

Explore GeoPIXE demo data and

“worked examples” on ASCI …



2020 X-ray Vision: High definition imaging and buried rare phase detection using XRF, PIXE and the Maia detector array Chris Ryan, CSIRO

Petra III

• Ulrike Bösenberg

• Katherine Spiers

• Jan Garrevoet

• Matthias Alfeld

• Gerald Falkenberg

CSIRO Manufacturing

• Steve Hogan

• Peter Davies

• Andrew Faulks

• Roshan Dodanwela

The Team

NSLS / BNL

• Pete Siddons

• Tony Kuczewski

• Arthur Zhi Yong Li

• Gianluigi De Geronimo

• Don Pinelli

• Angelo Dragone

• Don Elliott

• Rolf Beuttenmuller

• Paul O’Connor

Users  (Maia data)

• Anais Pages

• Margaux Le Vaillant

• Steve Barnes

• Louise Schoneveld

• Sam Spinks

• Belinda Godel

• Robert Thorne

• Raphael Baumgartner

• Tara Djokic

• Martin J. Van Kranendonk

• Mel Lintern

• Antony Van der Ent

• Heidi Berkenbosch

• Enzo Lombi

• Katie Dyl

• Erica Donner

• Phil Bland

• Barbara Etschmann

• Jöel Brugger

• Peter Kopittke

• Aaron Stewart

CSIRO Mineral Resources

• Chris Ryan

• Robin Kirkham

• Gareth Moorhead

• Paul Dunn

• Murray Jensen

• David Parry

• Louise Fisher

• Mark Pearce

• Rob Hough

University of Melbourne

• Jamie Laird

• Roland Szymanski

• Frank Rudzik

• David Jamieson

Australian Synchrotron

• David Paterson

• Martin de Jonge

• Daryl Howard

• Simon James

CHESS

• Arthur Woll

• Louisa Smieska


