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• Photon beam properties
• Brilliance / coherence / focusing
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spectroscopy?
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• Beam homogeneity
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• Prospects for high brilliance/coherence requiring 

methods
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PETRA IV
Conversion of PETRA into a diffraction limited storage ring
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PETRA IV
Brilliance

> emittance: 
➔coherence mode: 20 x 2 pmrad2

➔ timing mode: 50 x 5 pmrad2

> undulators: 5 m, 10 m
> optimised beta (in 10 m section): 2 x 2 m2

> ring current: 200 mA

Based on current reference lattice:

C. G. Schroer, et al., JSR 25, 1277 (2018).

Brilliance increase by

➔ 500 x (hard X-rays)

➔ 1000 x (high-energy X-rays)

PETRA IV brilliance at 100 keV 
same as for 10 keV at PETRA III today!!

500 x

1000 x
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Ultra Low Emittance Storage Rings
PETRA IV for example

transformative technology:

(Hybrid) Multi-Bend-Achromat

efficient
nanometer
focusing

extended & divergent
X-ray beam

small & collimated
X-ray beam

emittance reduced 
by up to factor

100
PETRA III PETRA IV

MAX IV, SIRIUS, ESRF-EBS, APS-U, SPring-8-II

Max. brightness: ~1023

Coherence: > 25%

4th generation SR source
10 - 30 pm rad

Max. brightness: ~1021

Coherence: ~0.1-1%

3rd generation SR source
1300 pm rad

source size
& divergence:
155 µm x 6 µm
7.7 x 3.8 µrad2

source size
& divergence:

11 µm x 3.2 µm
1.7 x 1.5 µrad2
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Flux per phase-space volume

A

Ω

Improvements in Brilliance allow: 

> faster measurements (time resolution)

> nano-imaging (spatial resolution)

> spectroscopy (energy resolution) 

Coherent flux:

Brilliance and coherent flux

Brilliance:
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Coherent flux for a given bandwidth: 

The total flux F0 depends on storage ring energy and undulator

High-energy x-rays: 

> diffraction limit can not be reached

> full gain in coherent (focused) flux (~ 100 x).

Up to 10 keV:
> diffraction limited beam: whole beam can be focused (lateral coherence)

Coherent flux

F0 will not change with improved emittance as long as storage ring energy remains 
unchanged (improvements using better (longer) undulators)

Experiments that do not require focusing or coherence will not profit much!
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1

PETRA IV:
Ultimate 3D Microscope for Physical, Chemical and Biological Processes

Hard X-ray beam (nearly) diffraction limited:

➔ Nanoprobes: focus nearly full flux to nanobeam
 ➔ Local quantitative measurements with all

➔ X-ray analytical techniques!

 ➔ Flux-hungry techniques go nano!

> inelastic X-ray scattering, 
> nuclear resonance scattering
> resonant magnetic hard X-ray scattering

New, unique properties:

> up to 500 x faster (movies rather than static images)

> up to 20 x better sensitivity (signal-to-noise ratio)

> up to 500 x larger field of view or sample volumes
(“needle in hay stack” problem)

 ➔ High-energy X-ray techniques go nano!

> Compton scattering
> Pair distribution function, …

CSIRO: gold deposit in clay 

 ➔ Spatial resolution of coherent imaging: 
➔ all spatial dimensions down to < 1 nm!

“needle in haystack”

S. Mishra et al, J Exp Bot 67, 
4639 (2016).

As traces in 
plants

➔ Coherent imaging:
> 4 to 5 orders of magnitude higher coherent flux density

> ptychographic imaging
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1

PETRA IV:
Ultimate 3D Microscope for Physical, Chemical and Biological Processes

Hard X-ray beam (nearly) diffraction limited:

➔ Nanoprobes: focus nearly full flux to nanobeam
 ➔ Local quantitative measurements with all

➔ X-ray analytical techniques!

 ➔ Flux-hungry techniques go nano!

> inelastic X-ray scattering, 
> nuclear resonance scattering
> resonant magnetic hard X-ray scattering

New, unique properties:

> up to 500 x faster (movies rather than static images)

> up to 20 x better sensitivity (signal-to-noise ratio)

> up to 500 x larger field of view or sample volumes
(“needle in hay stack” problem)

 ➔ High-energy X-ray techniques go nano!

> Compton scattering
> Pair distribution function, …

CSIRO: gold deposit in clay 

 ➔ Spatial resolution of coherent imaging: 
➔ all spatial dimensions down to < 1 nm!

“needle in haystack”

S. Mishra et al, J Exp Bot 67, 
4639 (2016).

As traces in 
plants

➔ Coherent imaging:
> 4 to 5 orders of magnitude higher coherent flux density

> ptychographic imaging

What about X
-ra

y absorptio
n spectro

scopy?



Beam properties at the sample
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Flux density
80 m from a 5 m long undulator

3rd generation4th generation 

Undulator: U33, 150 periods, 3rd harmonic
Storage ring: PETRA IV, 200 mA, 1600 
bunches 

Calculations done using SPECTRA 11, Tanaka T and Kitamura H 2001 J. Synchrotron Rad.8 1221

Undulator: U33, 59 periods, 3rd harmonic
Storage ring: PETRA III, 100 mA, 480 
bunches 
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Flux through pinhole
80 m from source

PETRA III
- 5 m U33
- Nat. emittance: 1.01 nmrad, 1 % coupling
- Ring current: 100 mA, 480 bunches
- 6 GeV
- 3rd harmonic

PETRA IV
- 2 m U33
- Nat. emittance: 12 pmrad, 20 % coupling
- ring current: 200 mA, 1600 bunches
- 6 GeV
- 3rd harmonic
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Ray tracing through a moderatly focused beamline
P64 as an example PETRA III

PETRA IV

From W.A. Caliebe, AIP Conference Proceedings 2054, 060031 (2019); 
https://doi.org/10.1063/1.5084662

Ray tracing done with xrt 1.3.5
K. Klementiev and R. Chernikov, “Powerful scriptable ray tracing package xrt”, Proc. 
SPIE 9209, Advances in Computational Methods for X-Ray Optics III, 92090A; 
doi:10.1117/12.2061400
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Footprint 80 m from source
Focused beam 80 m from source

3rd generation   4th generation

Observe the different scaling!



Classical XAFS spectroscopy
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“Classical” X-ray absorption spectroscopy 

Requires: 

- mm² sized beam

- Homogeneous and incoherent beam

- Monochromatic flux: > 109 s-1

=> Ideal source: Bending magnet or short wiggler

Methods:

- XANES, EXAFS (Q-EXAFS)

Applications: 

- In-situ experiments

        Catalysis, Batteries…

- ex-situ

        Geochemistry, material science, solid state
        physics... 

The Swiss knife in catalysis...

Capillary 
reactor

In situ reactor cell for operando XAS studies of direct 
synthesis of hydrogen peroxide at high pressure.
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A “typical” XAFS experiment

- Use XANES and mainly EXAFS as
  analytical method

- In-situ/operando experiment

- XAFS as part of a suite of analytical
  methods 

- XAFS results often decisive for the
  understanding of the structure of the
  system

- In high demand (High overbooking)

 
 

F. Maurer et al., Nature cat., 3, 824-833 (2020)

Fits of EXAFS spectra (left) of different structures found 
by DFT calculations (right) to the experimental spectrum 
of the active catalyst. 

Bulk XAFS with mm sized beam
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An undulator beamline for bulk XAFS
Ray tracing parameter:

- 15 period U33

- Sample 80 m from source

- 2 plane mirrors for higher harmonic rejection

- Si 111 (and 311) DCM

- Final slit 0.5*1 mm² (v*h)

- Tuned to 9000 eV

Today (P65):

- 11 period U33

- Beamsize 0.5*1.5 mm² (v*h)

- Monochromatic flux ~1012 s-1

=> Comparable beamsize, x10 increased flux (density)
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An undulator beamline for bulk XAFS
Ray tracing parameter:

- 15 period U33

- Sample 80 m from source

- 2 plane mirrors for higher harmonic rejection

- Si 111 (and 311) DCM

- Final slit 0.5*1 mm² (v*h)

- Tuned to 9000 eV

Today (P65):

- 11 period U33

- Beamsize 0.5*1.5 mm² (v*h)

- Monochromatic flux ~1012 s-1

Radiation damage, saturation of io
nisation chambers?
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Diffraction by slits 

Calculated and measured diffraction by rectangular slits, exp. from PETRA III beamline P10 (A. Zozulya and M. Sprung, 2010, unpublished) 

Xrt calculations of 
undulator beam 
diffraction at 
rectangular slits by 
K. Klementiev and 
R. Chernikov.

https://xrt.readthedocs.io/
gallery3.html
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Inhomogeneous beam hits inhomogeneous sample

Long distances => Small movements of beam position unavoidable…
=> NOISE!

Sample

X-ray beam

Detector

Time

In
te

ns
it y

Beam at sample positon (P65)
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A bending magnet beamline for bulk XAFS
Ray tracing parameter:

- Bending magnet 1.2 Tesla

- Sample 60 m from source

- Collimating mirror (toroid) at 37 m collects 
  2 cm of horizontal divergence

- Si 111 DCM at 38.5 m

- Final slit 1*5 mm² (v*h)

- Tuned to 9000 eV

Today (P65):

- 11 period U33

- Beamsize 0.5*1.5 mm² (v*h)

- Monochromatic flux ~1012 s-1

PETRA specific problem: Large radius => large distance of first optical element (Collimating mirror)
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Quick scanning XAFS

Needs:

- Homogeneous beam

- Now spatial intensity fluctuations with energy

- High photon flux on the sample surface > 1012 s-1

- Fast scanning monochromator

EXAFS with 100 Hz

Pt-L3 edge XANESduring a temperature programmed reduction (left) 
and reducing/oxidizing cycles (right) of a Pt based catalyst.
Data courtesy by Andreas Gänzler (KIT).

Flux through a pinhole 
(1*1 mm²), 80 m distance from 
source, tapered U33 undulator, 
150 periods. PIII left, PIV right.
FwhM ~ 500 eV 

Calculations done with Spectra 11 (J. Synchrotron Radiation 8, 1221 (2001)) 



Beyond
classical XAFS spectroscopy
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High brilliance / Small focus

Beam properties:

- Focused beam

- Monochromatic flux: > 1012 s-1

- Ideal source: Undulator

Methods:

- µ-XAFS

- XAFS-tomography

Applications: 

Catalysis, highly diluted samples, extreme conditions,
grazing incidence XAFS

Spatial resolution and high flux density

J. Becher at al., Catalysts, 11, 459 (2021)
https://doi.org/10.3390/catal11040459

Catalyst sample in capillary 
measured at 553 K; (a) 
reconstructed slice, color-coding 
depicting the absorption intensity 
at 11,585 eV; (b) extracted single 
particle of the same slice with 
marked regions of interest; (c) 
XANES spectra extracted from 
each region of interest

Laser heated Diamond Anvil Cellc & Spectroscopy
spectroscopy (and diffraction) on laser-heated melts, heated spot 
20 µm, rapid measurements or pulsed heating & measurement
G. Spiekermann et al., J. Synchr. Rad. 27 (2020)
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Spectrometers on the Rowland circle

- Beamsize limits energy resolution

- Photon hungry

- Applications profit from higher brilliance

High resolution emission spectroscopy and Co.
Mechanical 
drawing of the von 
Hamos 
spectrometer at 
P64 equipped with 
two detectors.

Ir L 3 -edge RXES 
plane and HERFD-
XANES spectrum 
constructed
from the plane by a 
cut at the maximum 
of the L 1 emission 
line.

A. Kalinko et al. J. Synchrotron Rad. 27, 31–36 (2020)

From: Cataldo, Giuseppe (Thesis, 
2015). Development of 
ultracompact, high-sensitivity, 
space-based instrumentation for 
far-infrared and submillimeter 
astronomy.



And finally coherence!
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Ptychography
Hard-X-Ray Lensless Imaging of Extended Objects

M. Rodenburg, A. C. Hurst, A. G. Cullis, B. R. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs,  and I. Johnson, PRL 98, 034801 (2007)

Schematic of the experimental setup for a shifting 
specimen coherent x-ray diffraction microscopy.
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M. Hirose, N. Ishiguro, K. Shimomura, N. Burdet, H. Matsui, M. Tada and Y. Takahashi, Angew. Chem. Int. Ed., 57(6), 1474-1479, (2017) 
DOI: (10.1002/anie.201710798)  

XAFS-Ptychography
Adding a further “dimension”

X-ray spectro-ptychography 
or ptychographic-XAFS). 

- Scanning of a focuseded coherent X-ray 
beam across the specimen at multiple X-
ray energies.

- Phase and amplitude images are 
reconstructed from diffraction patterns by 
phase retrieval calculation. 

- By analysing the energy dependence of 
the reconstructed images, spatially 
resolved X-ray absorption spectra are 
derived.
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XAFS ptychography
Current limits

“Currently, the available flux of incident X-rays 
for the ptychography-XAFS method is limited 
for the present synchrotron light source 
since X-ray ptychography experiments require 
highly coherent X-rays. In near-future 
synchrotron facilities, the coherent X-ray flux 
will be increased by a few orders of 
magnitude, which will open up the possibility 
of visualization of spatio temporal chemical 
reactions and structural heterogeneities at an 
unprecedented high spatial resolution.”

Hirose et al., J. Synchrotron Rad. (2020). 27, 455–461 https://doi.org/10.1107/S1600577519017004
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XAFS ptychography
Future perspectives
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XAFS ptychography
Future perspectives



Summary
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Summary

- Classical XAFS spectroscopy does not gain from brilliance and/or coherence of 4th 
generation storgae rings

- Beam inhomogenieties caused by diffraction will be amplified in more coherent beam

- The large flux density will increase problems with radiation damage and saturation of
  detectors (ionisation chambers) 

- Superbends / short wigglers can be an attractive alternative at rings with smaller
  circumference and lower e- energy than PETRA IV

Challenges
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Summary

- Methods that need high brilliance will gain from 4th generation sources

- This methods include µ-XAFs and XAFS-tomography

- Ptychographic XAFS is a very intersting method which will profit (be enabled) by the
  large fraction of coherent photons in the beam  

- It will provide a 3-dimensional chemical mapping with high spatial resolution

Gains



Thank you

XAFS Journal Club Europe and Asia organised by Kiyotaka Asakura and Hitoshi Abe

Proposed talk by Prof. Takahashi about ptychographic-XAFS

Registration via: 
https://docs.google.com/forms/d/e/1FAIpQLScyZVGEpGgFaAnMMk_ztaoasFrSx4nZ9fl1Ym_v8uVKiQZIlQ/viewform

https://docs.google.com/forms/d/e/1FAIpQLScyZVGEpGgFaAnMMk_ztaoasFrSx4nZ9fl1Ym_v8uVKiQZIlQ/viewform


Contact

Deutsches 

Elektronen-Synchrotron

www.desy.de

Welter Edmund

FS-PETRA-S

edmund.welter@desy.de 

+49 40 8998-4510
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Planning new beamlines
Ask users what they want to do in 5 – 10 years...

- Standard EXAFS (“large” beam, 1 min per scan, moderate flux density)

- Fast scanning XAFS (variable beamsize, 10 – 100 scans s-1)

- High precision EXAFS (k > 20 Å-1) (Usually “large” beam, highest possible spatial beam stability and
  homogeneity, moderate flux density)

- XAFS imaging with high spatial resolution (XAFS-tomography, µm² sized beam, high intensity/flux density)

- µ-XAFS << 10 µm (µm² sized beam, high intensity/flux density)

- 
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Home lab to synchrotron
The gap is getting larger

DORIS III bending 
magnets

X-ray tube based 
bench-top XAFS 
devices SuperBend at SLS (3 GeV, 3rd) 

SuperXAS beamline

PETRA III undulators

MAX IV, the first operating 4th 
generation 3 GeV storage ring
Balder beamline, In vacuum wiggler 
(K=9), 38 periods, L = 50 mm 
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