Quantification of Material Gradients in Nanocrystals¹

Klaus Boldt⁺, Stuart Bartlett, Nicholas Kirkwood, Bernt Johannessen [†]University of Konstanz, Box 710, 78457 Konstanz, Germany

```
Universität
Konstanz
```


ZnSe/CdS: Type-II structure with temperature-induced gradients

What? Quantification of the interfacial gradient of core/shell semiconductor nanocrystals.

Why? Gradients improve optical properties,² but knowledge on their structure is lacking.

How? Fit of a gradient model³ to the average coordination from a Se K-edge EXAFS spectrum.

260 °C: Strong cation diffusion already at typical shell growth conditions

290 °C: An ordered Zn_{0.5}Cd_{0.5}Se superlattice in the core minimises strain⁴

ensity	LO (CdSe-	1 like)		260 °C 290 °C	
ering int			2LO,		
Scatte		LO ₂ ISe-like)	Lo	1+LO2 2LO2	
	200	300	400	500	
Wavenumber (cm ⁻¹)					

Raman Spectra (λ = 785 nm):

- Almost no CdS LO phonon
- Strongly enhanced 2LO1 overtone (290 °C sample)
- Sub band-gap resonant Raman scattering
- Exciton trapped at interface

point of inflection

¹Boldt et al., Nano Lett. 2020, 20, 1009; ²Boldt et al., Chem. Mater. 2013, 25, 4731; ³Cragg et al., Nano Lett. 2010, 10, 313; ⁴Wei et al. Phys. Rev. B 1990, 41, 8240.