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Timeline 
• December 2011: ARC LIEF LE120100076 

• The first Australian high pressure Synchrotron facility for geoscience research  

• Rushmer, O'Neill, Cruden, Turner. 

• August 2013: Apparatus delivered 

• April 2014: Mark Rivers writes initial control software 

• March 2015: Jeremy hired 

• March 2016: First high P run 

• May 2016: First in situ high P XANES measurement 

• June 2016: First XANES measurement of silicate liquid 

• July 2016: First imaging/falling sphere experiment 
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• Solid media pressure apparatus 

• Multi-anvil apparatus 
• Anvils remain in compression 

• Principle of massive support 

• 6 anvils 

• Cubic sample volume 

– Cubic multi-anvil 
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Deformation-DIA apparatus 



Deformation-DIA apparatus 

Up to ~1500°C 
Up to 6 GPa 
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First user experiment 

• Proof of concept: Can we collect XANES from 
silicate liquids at high P and T? 
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• Proof of concept: U and Th L3-edge XANES in 
MORB (mid-ocean ridge basalt) liquid 

 

 



First user experiment 

• Proof of concept: U and Th L3-edge XANES in 
MORB liquid 

• U-series disequilibria observed in igneous rocks 

• Chemical separation of U and daughters during 
melting leads to disequilibrium 

• With assumptions, U-series disequilibria are used 
to infer timescales of magmatic processes 

• Assumptions include valence state of U 

• Experiments suggest pressure-induced valence 
change of U 

 

 



Experiment schematic 



First user experiment 

• Proof of concept: U and Th L3-edge XANES in 

MORB liquid 
 

• Contain silicate liquid at experimental conditions 
 

• Control chemical potential of oxygen (fO2) 
 

• Permit sufficient beam transmission 
 

• Δµd sufficient for XANES (i.e. not <0.1) 

 



First user experiment 

• Proof of concept: U and Th L3-edge XANES in 
MORB liquid 

(90 wt% B + 10 wt% epoxy) 
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Mg2SiO4 

Re-ReO2 

Re-ReO2 

Al-rich orthopyroxene 
MgSiO3 
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MORB liquid 
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First user experiment 

• Proof of concept: U and Th L3-edge XANES in 
MORB liquid 
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Second user experiment 

• Proof of concept: Falling sphere viscometry 



Second user experiment 

• Proof of concept: Falling sphere viscometry 

Soda-lime glass sample, ~300 µm Pt ‘sphere’, ~1.1 GPa, ~1500 °C, 38 keV incident energy 



How low can we go? 

• Lowest accessible energy for XANES 

Andesite + 2 wt.% Ga2O3 



Accessible elements for XANES 

10  34 keV (with focussing mirror) 



The future 

• New monochromator for XAS will permit 
faster XANES scans 

 

• Improved capsule methods 
• Polycrystalline capsule 

• Hot-isostatic pressing 

 

• New assembly design 
• More robust heaters 

 

• Improvements to hydraulics 

Nash, Smythe & Wood (2016) 



Other techniques at XAS 

• In situ density measurements 
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Thickness for 1 absorption length 

The future 

• Install the D-DIA apparatus on IMBL 

• Imaging 

• In situ diffraction 

• Deformation 

1 absorption length = length for 36.8% absorption 



7 mm cube 

4 mm anvil truncation 
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