100 nm 3D Laue Diffraction Technique for Ultra-High Spatial and Strain Resolution Combined with Versatile Analytical Probes

James C.-S. Ku

27 NOV, 2015 AOFSRR National Synchrotron Radiation Research Center, Taiwan

National Synchrotron Radiation Research Center, Taiwan

NSRRC is a national light-source facility and research institution.

1.5 GeV Taiwan Light Source

100

3 GeV Taiwan Photon Source

TPS major milestones

Comparison of Brilliance between TLS and TPS

TPS bending BLs @ 10 keV : 10² times brighter TPS ID BLs

@ 1 keV: ~ 10^3 times brighter.

@ 10 keV: 10⁴ times brighter.

Experimental Techniques of TPS

	imaging	scatt	spectroscopy				
	CDI	structural diffraction	scattering	XAS	XEOL	RIXS	PES
05A Protein µ–crystallography							
09A Temporally Coherent XRD							
21A X-ray nanodiffraction							
23A X-ray nano probe							
25A X-ray coherent scattering							
41A Soft X-ray scattering							
45A Sub μ m soft spectroscopy							

CDI: coherent diffraction imaging XAS: X-ray absorption spectroscopy XEOL: X-ray excited optical luminescence RIXS: resonant inelastic X-ray scattering PES: photoemission emission spectroscopy

Call for proposals

Apply for beam time at http://portal.nsrrc.org.tw

Beam time application schedule for cycle 2016-2

- Proposal submission deadline: April 30
- Beam time announcement: June 30

Cycle 2016-2 beam time
September 22 – December 27, 2016

March 24 — June 28 Commissioning and pilot experiments If you are interesting in our beamline, please contact with us!

Information from Laue Diffraction

Courtesy Dr. Nobumichi Tamura, ALS

X-ray 3D Laue Diffraction Science

Applications

Stress-Strain curves

- Metal deformation, stress and strain partitioning, fatigue, grain growth, recrystallization, texture development, etc.;
- Stress effect and strain localization in semiconductor IC devices;
- *Phase separation and domain interactions in complex* oxides;
- *Micro/nano-crystallography: nano-materials and minerals;* single crystal diffraction at high pressure.

interconnects

x-ray

Thermo-mechanical coupling

3D-Laue vs. 3D-EBSD vs. 3D-DCT

Scanning type Non-destructive Orientation Strain/Stress Highest spatial resolution ~ few hours

Scanning type Destructive Orientation Strain/Stress* Moderate spatial resolution

~ few weeks*

* uniaxially strain assumed
 * included sample preparation
 downloaded from Oxford Instruments

Full field type Non-destructive Orientation* Strain/Stress* Moderate spatial resolution

~ few hours

*small mosaicity required * average strain tensors

downloaded from Zeiss.com

Information from Laue Diffraction

B.C. Larson et al, Nature 415, 887 (2002)

Lyle E. Levine et al, Nature Materials 5, 619 (2006)

Why Laue for Nano-Diffraction?

Rotation in Bragg Diffraction will Caused the X-ray Beam Probing at Different Sample Region.

3D Laue Diffraction (DAXM)

Courtesy Dr. Wenjun Liu, APS

3D Image Reconstruction

Image Reconstruction 400 images at 100 images at different wire different positions depths 0 μm 10 µm take successive calculate deptins late differences, and sort to depth 60 µm 400 *i*+1 100 µm

subtract

Courtesy Dr. Wenjun Liu, APS

Data Processing

Taiwan Photon Source Phase-I Beamline: X-ray NanoDygraction (XND)

Depth Resolution : 40

Wire-scan parameter: (APS)

- 1. sample surface to wire: 200 um.
- 2. wire dimension: 50 um
- 3. scan step: 0.45 um (min.)
- 4. Detector pixel size: 200 um
- 5. Detector to Sample: 50 cm

Depth Resolution: 1/1.414+0.1~0.8 um (1um step) 0.5/1.414+0.1~0.45 um (0.5 um step)

W. Yang et. al. Micron 35, 431 (2004)

We further reduce the parallax contribution from 100 nm down to 6 nm by using SPM feedback technology Wire-scan parameter: (TPS)

- 1. sample surface to wire: 15 um.
- 2. plate dimension: 50 um
- 3. scan step: 0.0005 um (min.)
- 4. Detector pixel size: 172 um
- 5. Detector to Sample: 43~67 cm

Depth Resolution:

50/1.414+6~41 nm (50 nm step, coarsemode)

Beamline Design

Specifications

- * Energy Range: 7 25 keV (mono-beam); 5 30 keV (pink-beam)
- Photon Flux: 3x10¹¹ photon/sec (7 keV); 3x10⁹ photon/sec (25 keV); > 1x10¹⁵ photon/sec (pink)
- * Energy Resolution: $10^{-4} (\Delta E / E)$
- Spatial Resolution: < 100x100 nm (lateral); 40 nm (depth resolution in 3D)
- * Effective WD of KB: 48.8-60.8 mm (remove Be-window)
- * Environments: Ambient & Vacuum (760 torr ~ 1x10⁻⁷ torr)
- * Sample Temperature: 100 K 1,300 K (Vacuum); 300 K 600 K (Ambient)
- * Maximum Sample Size: 1.4x1.0 cm; 0.5 cm for thickness
- Main Functionalities: 2,3D-Laue XRD, XRF, XEOL/PL, SPM-IV, NanoXAS, PXM, and SEM

Scientific Opportunities

Nature Materials 5, 619 (2006)

Nature Communications 4, 2774 (2013)

Most of them are ex-situ, How about in-situ...?

Layout of End-station

Inside the Chamber

The "In-vacuum" PILATUS3-6M detector

- moving range: 430~670 mm (from focal point)
- * angle resolution: 0:02~0:015 degree
- * Triangulation 3D Laue

Flance CFB4.0

Quadruprobe System

Nickel probe (Unisoku, STM/I-V)

Fiber probe (Nanonics, SNOM/XEOL/ TERS/Gas-deliver/SECM)

Sample Holder

Akiyama probe (Nanosensors, AFM)

FEMTO 🗞 TOOLS

Micromechanical probe (microgripper, microsening)

3D + 1D = Future of Materials Science

Schedule

Time	2015.10	2015.11	2015.12	2016.01	2016.02	2016.03	2016.04	2016.05
Source IUT-22								
Hutch								
Infrastructure								
Installation of Beamline								
Installation of End-station								
Commission of Source								
Commission of Beamline								
Commission of End-station					Off-line			
First Experiment								

Functionalities of End-station

1st-stage (2016.03~08)

- 1. 2D Laue Diffraction Image
- 2. 2D Fluorescence Image
- 3. PXM
- 4. VT Experiments (RT to 1,000K)
- 5. In-situ E-field & Force
- 6. SEM navigation + EDS

Now

- 2nd-stage (2016.08~)
- 1. 2D Laue Diffraction Image + 3D Laue Diffraction Reconstruction
- 2. 2D Fluorescence Image
- 3. PXM + Absorption Images
- 4. VT Experiments (RT to 1,000K) + Extend LT to 100K
- 5. In-situ E-field & Force + Optical (XEOL/NSOM)
- 6. SEM navigation + EDS + CL

Installation of 4BCM, KB & Exp. Chamber

Installation of SEM, TFM, BPM, Beamline Components

First results from on-line SEM

First results from on-line SEM

Taiwan Photon Source Phase-I Beamline: X-ray NanoDiffraction (XND)

Visit Our Facebook for Details

https://www.facebook.com/groups/submicron/

History & Project Team

(APS) (Oak Ridge)

(ALS)

Thanks for your kind attention!

email: <u>csku@nsrrc.org.tw</u>