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1. Neutron scattering

a. Neutron properties

b. Terminology

c. Cross sections and the scattering function

2. Inelastic neutron scattering

a. Inelastic data

b. kinematics

3. Time-of-flight neutron spectroscopy
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1. Neutron Scattering



Neutrons

• Neutrons are subatomic particles

– symbol: n or n0

– mass = 1.6749 x 10-27 kg

– no net electric charge

– high penetration depth

– have a magnetic moment
• quark substructure

• spin = ½

• fermions
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nucleus

neutron



Physics at RMIT

• de Broglie wavelength of the neutron

• Kinetic energy of slow neutrons with velocity v

• Wavevector k of the neutron has magnitude

• Momentum of neutron
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(direction being 

that of its velocity)

where ħ =
ℎ

2𝜋

𝐸 =
1

2
𝑚𝑣2

λ =
ℎ

𝑚𝑣

𝑘 =
2𝜋

λ

𝑝 = ћ𝑘



Units

• In neutron scattering you will often find the same
properties reported with different units

• Get used to converting between units (not all 
techniques use SI)

• Become familiar with approximate conversion rates
– Energy, E (J, eV)

– Wavelength, λ (nm, Å)

– Optical frequency, f (Hz)

– Angular frequency, ω (Hz)

– Velocity, v (ms
-1

)

– Wave vector, k (Å
-1

, cm
-1

)

– Temperature, T (K, °C, F)
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Using:

Thermal neutrons @ 293 K = 25 meV

Cold neutrons @ 20 K = 2 meV

A neutron at room 

temperature possesses 

25 meV of energy



Wave vector, k

• A neutron with incident wave vector ki, interacts with 
a sample

• The neutron’s outgoing wave vector is kf

• kf makes an angle 2θ to ki
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ki

kf

2θ
REAL Space



Scattering vector

• In reciprocal space, we create the scattering triangle

• Scattering vector, Q = ki – kf

• Q denotes the momentum transfer
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ki

kf
Q

2θ
RECIPROCAL Space

Reciprocal space is 
the Fourier

transform of real 
space



Momentum Transfer, Q

• Reciprocal space scattering diagram

Elastic case: Qi = Qf
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ki kf

Elastic 

case

Q

Qi Qf

2θ

Inelastic 

case

ki kf

Q

Qi Qf

φ

Inelastic case: Qi ≠ Qf

Here, Qi > Qf so momentum was 

given to the system



Energy Transfer – ћω

• In terms of energy:

• Energy transfer: 

• Combining equations for energy and momentum transfer:
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𝐸𝑖 =
ħ2

2𝑚𝑛
𝑘𝑖
2 𝐸𝑓 =

ħ2

2𝑚𝑛
𝑘𝑓
2

where ħ =
ℎ

2π

𝑄2 = 𝑘𝑖
2 + 𝑘𝑓

2 − 2𝑘𝑖𝑘𝑓 cosφ

ħω = 𝐸𝑖 − 𝐸𝑓 =
ħ2

2𝑚𝑛
𝑘𝑖
2 − 𝑘𝑓

2 where ω = 2π𝑓



Probes of Condensed Matter

• Dynamical ranges

– Real space
• (r , t)

– Reciprocal 
space

• (Q,ω)

• Neutron 
scattering

– Cross section

– Energy

– Temperature
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Neutrons in Condensed Matter Research
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The ESS Project, Vol II, ed. By D. Richter (FZ Jülich, 2002), p.5-4



Total Cross-Section

• Scattering occurs in an elementary cone of solid 

angle dΩ
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Total Cross-Section

• Total cross-section defined by:

• Incident plane wave of neutrons:

• The probability of finding a neutron in a volume dV is:  however, 

– refers to density of one neutron per unit volume in all space

• The flux of neutrons incident normally on unit area per second is:
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k = wavenumberψ𝑖 = 𝑒−𝑖𝑘𝑥

ψ𝑖 = 𝑒−𝑖𝑘𝑥

𝜎𝑡𝑜𝑡 =
𝑛𝑜. 𝑜𝑓 𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 𝑖𝑛 𝑎𝑙𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑓𝑙𝑢𝑥 𝐼0

ψ𝑖
2𝑑𝑉 ψ𝑖

2 = 1

𝐼0 = 𝑛𝑒𝑢𝑡𝑟𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 × 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝑣



• Wave scattered by an isolated nucleus:

• This is the effective area of the nucleus viewed by the neutron

– Units of cross-section = barns [1 barn = 10-28m2]

– Units of scattering lengths = fermis [1 fermi = 10-15m] 

σ = cross sections (barns)b = scattering length (fermi)

Total Cross-Section
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r = distance from scattering nucleus

b= scattering length of nucleus
ψ𝑓 = −𝑏

𝑒−𝑖𝑘𝑟

𝑟



Scattering Function

• Scattering per atom is given 
by a double differential cross 
section

– Scattering cross section σs

– Scattering function S(Q,ω)

• Elastic scattering: ω=0

• Inelastic scattering at any Q

– Localised motion

• Q-dependent frequencies in 
S(Q,ω) 

– Propagating motions in r(t)
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Neutron and Synchrotron Radiation for Condensed Matter Studies, J. Baruchel, 1993



2. Inelastic neutron 

scattering
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Neutron spectrometers at ANSTO
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NEUTRON 

SPECTROMETERS



Energy resolution of ACNS spectrometers

• Capabilities for 

Dynamics and 

Excitations at 

OPAL
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EMU

TAIPAN PG

TAIPAN +Cu

PELICAN

SIKA 
F. Klose, P. Constantine, S.J. 
Kennedy and R.A. Robinson. 
J. Phys.: Conf. Ser. 528 (2014) 
012026



Inelastic Data Traces
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Maths Karlsson. Phys. Chem. Chem. Phys., 2015,17, 26-38



Kinematics of inelastic scattering

• Remember this equation?

• Written in terms of energy:
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𝑄2 = 𝑘𝑖
2 + 𝑘𝑓

2 − 2𝑘𝑖𝑘𝑓 cos 2𝜃

ћ2𝑄2

2𝑚𝑛
= 𝐸𝑖 + 𝐸𝑓 − 2 𝐸𝑖𝐸𝑓 cos 2𝜃

= 2𝐸𝑖 − ћ𝜔 − 2 𝐸𝑖 𝐸𝑖 − ћ𝜔 cos 2𝜃
For direct geometry 
spectrometer

= 2𝐸𝑓 + ћ𝜔 − 2 𝐸𝑖 𝐸𝑓 + ћ𝜔 cos 2𝜃 For indirect geometry 
spectrometer



3. Time-of-flight neutron 

spectroscopy



Time-of-flight Spectrometer

• Time-of-flight 
spectrometer (TOF) 

– Monochromator
• Selects neutron wavelength

– Choppers
• Define Ei

– Sample
• Scatters neutrons

– Detectors
• Register time of arrival of 

neutrons -> Ef obtained
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Direct geometry 

spectrometer



PELICAN
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D. Yu, R. A. Mole, G. J. Kearley EPJ Web of Conferences  83, 03019 (2015) 

Continuous spectrum 
of neutron energies

Monochromator
selects single 

energy / 
wavelength

Fermi 
chopper 
pulses 

the beam

Second 
chopper 
refines 

the beam

Neutrons 

scattered by the 

sample are time 
shifted.

Scattered neutrons carry 
both time and position 

information to determine 
Ef.



PELICAN
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Bank of 200 1m 3He LPSD 
detectors

Fermi choppers
3 x HOPG 

Monochromators

Sample position



PELICAN – Wavelength options 
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Take-off angle = 127°
λ = 5.97 Å

ΔE = 65 µeV

neutrons

kf

ki

HIGH RESOLUTION

2θ



PELICAN – Wavelength options 
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Take-off angle = 90°
λ = 4.69 Å

ΔE = 140 µeV

neutrons

kf

ki

HIGH FLUX

2θ

140 µeV = 34 GHz = 30 ps

Q



PELICAN – Wavelength options 
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Take-off angle = 48°
λ = 2.73 Å

ΔE = 650 µeV

neutrons

kf

ki

HIGH FLUX (Certain Q)

2θ

• If ki = kf an elastic signal is 
produced

• If kf < ki data appears on the 
energy loss side of the 
spectrum

• If kf > ki data appears on the 
energy gain side of the 
spectrum



Data from PELICAN

QENS
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• Analysis of the 
shape and 
width of the 
quasi-elastic 
peak reveals 
dynamics 
information

• Direct 
correlation 
between 
energy and 
frequency of 
motion Gates et al. Applied Clay Science 147 (2017)

Water desorption and absorption in sodium montmorillonite



Science on PELICAN: Case study 1
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• Vibrational density of states of crystalline and 

amorphous solids

Polycrystalline TiH1.65

PELICAN TOF Data

Neutron Energy Gain Side

Energy Transfer (meV)
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Optical Phonon 
Band

Acoustic 
Phonon 
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Phonon Band Gap

λ = 4.75Å

Eneutron = 3.63meV

Wang et al. Jpn. J. Appl. Phys. 56 (2017)



Science on PELICAN: Case study 2
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Crystal field interpretation of bulk 
magnetic behavior in ErNiAl4

• Properties of crystal-field
splittings

• The Er3+ (J = 15/2) CF scheme 
has the relatively large number 
of eight Kramers doublets.

Stewart et al. (In preparation)



Science on PELICAN: Case study 3

• Single-crystal samples

10th AONSA Neutron School - Gail Iles 33

[-1 -1 1]

[-2 -2 0]

Aluminium single crystal

[-1 -1 -1]

{111} directions

Al_Eslice.mp4
Al_Eslice.mp4


Science on PELICAN: Case study 4

10th AONSA Neutron School - Gail Iles 34

• Single-molecule magnets INS spectra of TbD at λ= 4.74 (left) and λ = 
2.37 Å (right) at 30 K.– Tiny rotation of the 

dihedral angle 
gives a 1 meV shift 
= a 10 K change in 
thermal energy

Vonci et al. Chem. Commun. (2015)
Molecular structure (left) and representations of the 
two distortion angles of the Tb coordination (right) for 
the [Tb(W5O18)2]9 polyanion in Tb; atom colour code: 
W (yellow), O (red) and Tb (violet).



PELICAN Capabilities

• Gas-loading

• Humidity variation

• Polarised neutrons

• Magnetic field

• Dilution temperatures 
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4. Backscattering 

Spectroscopy



Backscattering Spectrometer

• Premonochromator – defines  
initial wavelength of neutrons

• Chopper – pulses the beam

• Deflecting chopper – sends 
neutrons to monochromator

• Doppler-driven 
monochromator – varies Ei
(indirect geometry)

• Sample – scatters the beam

• Analysers – backscatter only 
neutrons with certain E = Ef

• Detectors – only detect 
neutrons reflected by the 
analysers
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Indirect geometry 

spectrometer



EMU
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Si (111) backscattering 

analysers

Sample and 3He LPSD 

detectors

Background 

chopper

Supermirror 

Focusing Guide

Doppler driven Si 

monochromator.

Dynamic range: +/- 28µeV

Cold neutrons: T~20K

Flux at sample = 

105 n cm-2 s-1

Wavelength: λ=6.271Å



EMU
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de Souza et al. Neutron News 27 (2016)

EMU_Animation.mp4
EMU_Animation.mp4


EMU
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EMU Distance/Time Diagram
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Data from EMU
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1 µeV = 242 MHz = 4 ns



Science on EMU: Case study 1
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• Unfrozen Water In Na-montmorillonite

Gates et al. P6167 (Manuscript in preparation)

EFW
Elastic Fixed 

Window Scan



Science on EMU: Case study 2
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• Dynamics of encapsulated Hepatitis B surface Antigen

Rasmussen et al. EPJ Special Topics (Accepted, 2018)



Science on EMU: Case study 3

• QENS study of propane diffusion in gas hydrates

• Hydration water dynamics on rutile nanoparticles 
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E. Mamontov et al. 
J. Phys. Chem. C. 111 

(2007)



EMU Capabilities

Science

• Dynamics of soft 

condensed matter such as 

polymers, proteins, 

biological membranes and 

gels

• Local and long range 

diffusion of liquids, solutions 

and confined systems

• Properties of quantum 

liquids, Fermi and non-

Fermi systems

Sample Environment

• Gas-loading

• Standard cryostat 

temperatures

• Dilution temperatures
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Thank you for your attention!

gail.iles@rmit.edu.au

www.nbi.ansto.gov.au/pelican/status/mobile.html
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