High resolution inelastic neutron scattering PELICAN \& EMU

Lecturer in Physics
School of Science

Acknowledgement of Country

I acknowledge the Dharawal speaking people, traditional custodians of the land, and pay my respects to elders past and present.

Overview

1. Neutron scattering
a. Neutron properties
b. Terminology
c. Cross sections and the scattering function
2. Inelastic neutron scattering
a. Inelastic data
b. kinematics
3. Time-of-flight neutron spectroscopy
4. Backscattering neutron spectroscopy

1. Neutron Scattering

Neutrons

- Neutrons are subatomic particles
- symbol: n or n^{0}
- mass $=1.6749 \times 10^{-27} \mathrm{~kg}$
- no net electric charge
- high penetration depth
- have a magnetic moment
- quark substructure
- spin = $1 / 2$

- fermions

Physics at RMIT

- de Broglie wavelength of the neutron
 that of its velocity)
- Kinetic energy of slow neutrons with velocity \mathbf{v}

- Wavevector \boldsymbol{k} of the neutron has magnitude $k=\frac{2 \pi}{\lambda}$
- Momentum of neutron

$$
p=\hbar k \quad \text { where } \quad \hbar=\frac{h}{2 \pi}
$$

Units

- In neutron scattering you will often find the same properties reported with different units
- Get used to converting between units (not all techniques use SI)
- Become familiar with approximate conversion rates
- Energy, E (J, eV)
- Wavelength, λ (nm, Å)
- Optical frequency, f(Hz)
- Angular frequency, ω (Hz)
- Velocity, $\mathrm{v}\left(\mathrm{ms}^{-1}\right)$
- Wave vector, $k\left(\AA^{-1}, \mathrm{~cm}^{-1}\right)$
- Temperature, T (K, $\left.{ }^{\circ} \mathrm{C}, \mathrm{F}\right)$

RMIT

Wave vector, \mathbf{k}

- A neutron with incident wave vector \mathbf{k}_{i}, interacts with a sample

REAL Space

- The neutron's outgoing wave vector is \mathbf{k}_{f}
- \mathbf{k}_{f} makes an angle 2θ to \mathbf{k}_{i}

Scattering vector

- In reciprocal space, we create the scattering triangle

RECIPROCAL Space

- Scattering vector, $\mathbf{Q}=\mathbf{k}_{\mathrm{i}}-\mathbf{k}_{\mathrm{f}}$
- Q denotes the momentum transfer

Momentum Transfer, Q

- Reciprocal space scattering diagram

Elastic case: $\mathrm{Q}_{\mathrm{i}}=\mathrm{Q}_{\mathrm{f}}$
Inelastic case: $\mathrm{Q}_{\mathrm{i}} \neq \mathrm{Q}_{\mathrm{f}}$
Here, $\mathrm{Q}_{\mathrm{i}}>\mathrm{Q}_{\mathrm{f}}$ so momentum was given to the system

Energy Transfer - ћ ω

- In terms of energy: $E_{i}=\frac{\hbar^{2}}{2 m_{n}} k_{i}^{2} \quad E_{f}=\frac{\hbar^{2}}{2 m_{n}} k_{f}^{2} \quad$ where $\quad \hbar=\frac{h}{2 \pi}$
- Energy transfer:

$$
\hbar \omega=E_{i}-E_{f}=\frac{\hbar^{2}}{2 m_{n}}\left(k_{i}^{2}-k_{f}^{2}\right) \quad \text { where } \quad \omega=2 \pi f
$$

- Combining equations for energy and momentum transfer:

$$
Q^{2}=k_{i}^{2}+k_{f}^{2}-2 k_{i} k_{f} \cos \varphi
$$

Probes of Condensed Matter

- Dynamical ranges
- Real space
- (r, t)
- Reciprocal space
- (Q, ω)
- Neutron scattering
- Cross section
- Energy
- Temperature

Neutrons in Condensed Matter Research

Total Cross-Section

- Scattering occurs in an elementary cone of solid angle $\mathrm{d} \Omega$

Spherical
wave

Total Cross-Section

- Total cross-section defined by:

$$
\sigma_{t o t}=\frac{\text { no.of neutrons scattered in all directions per second }}{\text { incident flux }\left(I_{0}\right)}
$$

- Incident plane wave of neutrons: $\Psi_{i}=e^{-i k x} \quad \mathrm{k}=$ wavenumber
- The probability of finding a neutron in a volume dV is: $\left|\Psi_{i}\right|^{2} d V$ however, $\left|\Psi_{i}\right|^{2}=1$
- $\Psi_{i}=e^{-i k x}$ refers to density of one neutron per unit volume in all space
- The flux of neutrons incident normally on unit area per second is:

$$
I_{0}=\text { neutron density } \times \text { velocity }=v
$$

Total Cross-Section

- Wave scattered by an isolated nucleus: $\Psi_{f}=-b \frac{e^{-i k r}}{r}$
$r=$ distance from scattering nucleus $b=$ scattering length of nucleus

$$
=>\sigma_{t o t}=\frac{I_{f}}{I_{0}}=4 \pi b^{2}
$$

- This is the effective area of the nucleus viewed by the neutron
- Units of cross-section = barns [1 barn $\left.=10^{-28} \mathrm{~m}^{2}\right]$
- Units of scattering lengths $=$ fermis $\left[1\right.$ fermi $\left.=10^{-15} \mathrm{~m}\right]$

ZSymbA	p or $\mathrm{T}_{1 / 2}$	I	b = scattering length (fermi)				$\sigma=$ cross sections (barns)			
			$\mathrm{b}_{\mathbf{c}}$	\mathbf{b}_{+}	b.	c	σ coh	σ inc	σ scatt	σ abs
0-N-1	10.3 MIN	1/2	-37.0(6)	0	-37.0(6)		43.01(2)		43.01(2)	0
1-H			-3.7409(11)				1.7568(10)	80.26(6)	82.02(6)	$0.3326(7)$
1-H-1	99.985	1/2	-3.7423(12)	10.817(5)	-47.420(14)	+/-	1.7583(10)	80.27(6)	82.03(6)	$0.3326(7)$
1-H-2	0.0149	1	6.674(6)	9.53 (3)	0.975(60)		$5.592(7)$	2.05 (3)	$7.64(3)$	$0.000519(7)$
1-H-3	12.26 Y	1/2	4.792(27)	4.18(15)	6.56(37)		2.89 (3)	0.14 (4)	3.03(5)	<6.01-6
2 -He			3.26(3)				1.34(2)	0	1.34(2)	0.00747(1)
2-He-3	0.00013	1/2	5.74(7)	4.374(70)	$9.835(77)$	E	$4.42(10)$	$1532(20)$	6.044)	5333.0(7.0)
2-He-4	0.99987	0	3.26(3)				1.34(2)	0	$1.34(2)$	0
3-Li			-1.90(3)				0.454(10)	0.92(3)	1.37(3)	$70.5(3)$
3-Li-6	7.5	1	2.0(1)	0.67(14)	4.67(17)	+/-	$0.51(5)$	0.46 (5)	$0.97(7)$	940.0(4.0)

INSTITUT LAUE-LANGEVIN

Albert-José Dianoux ILL (Grenoble) Gerry Lander ITU (Karlsruhe)

July 2003

Scattering Function

- Scattering per atom is given by a double differential cross section
- Scattering cross section σ_{s} - Scattering function $S(Q, \omega)$
- Elastic scattering: $\omega=0$
- Inelastic scattering at any Q - Localised motion
- Q-dependent frequencies in S(Q, w)
- Propagating motions in r(t)

2. Inelastic neutron scattering

Neutron spectrometers at ANSTO

Energy resolution of ACNS spectrometers

- Capabilities for Dynamics and Excitations at OPAL
F. Klose, P. Constantine, S.J. Kennedy and R.A. Robinson. J. Phys.: Conf. Ser. 528 (2014) 012026

Inelastic Data Traces

Maths Karlsson. Phys. Chem. Chem. Phys., 2015,17, 26-38

Kinematics of inelastic scattering

- Remember this equation?

$$
Q^{2}=k_{i}^{2}+k_{f}^{2}-2 k_{i} k_{f} \cos 2 \theta
$$

- Written in terms of energy:

$$
\begin{aligned}
\frac{\hbar^{2} Q^{2}}{2 m_{n}} & =E_{i}+E_{f}-2 \sqrt{\left(E_{i} E_{f}\right)} \cos 2 \theta \\
& =2 E_{i}-\hbar \omega-2 \sqrt{E_{i}\left(E_{i}-\hbar \omega\right)} \cos 2 \theta
\end{aligned}
$$

For direct geometry spectrometer

$$
=2 E_{f}+\hbar \omega-2 \sqrt{E_{i}\left(E_{f}+\hbar \omega\right)} \cos 2 \theta
$$

3. Time-of-flight neutron spectroscopy

Time-of-flight Spectrometer

- Time-of-flight spectrometer (TOF)
- Monochromator
- Selects neutron wavelength - Choppers
- Define E_{i}
- Sample
- Scatters neutrons

- Detectors

- Register time of arrival of neutrons -> E_{f} obtained

Direct geometry spectrometer

PELICAN

PELICAN

PELICAN - Wavelength options

PELICAN - Wavelength options

PELICAN - Wavelength options

Data from PELICAN

Water desorption and absorption in sodium montmorillonite

QENS

- Analysis of the shape and width of the quasi-elastic peak reveals dynamics information
- Direct correlation between energy and frequency of motion

(b)

Gates et al. Applied Clay Science 147 (2017)

- RMIT

UNIVERSITY

Science on PELICAN: Case study 1

- Vibrational density of states of crystalline and amorphous solids

Wang et al. Jpn. J. Appl. Phys. 56 (2017)

Science on PELICAN: Case study 2

- Properties of crystal-field splittings
- The Er ${ }^{3+}$ ($\mathrm{J}=15 / 2$) CF scheme has the relatively large number of eight Kramers doublets.

Stewart et al. (In preparation)

Crystal field interpretation of bulk magnetic behavior in ErNiAl_{4}

Science on PELICAN: Case study 3

- Single-crystal samples

KS $6 \ln 2010 x^{\prime}$
p.0.4n $1.514 x^{-1}$

- RMIT

UNIVERSITY

Science on PELICAN: Case study 4

- Single-molecule magnets
- Tiny rotation of the dihedral angle gives a 1 meV shift = a 10 K change in thermal energy

Molecular structure (left) and representations of the two distortion angles of the Tb coordination (right) for the [Tb(W5O18)2]9 polyanion in Tb; atom colour code: W (yellow), O (red) and Tb (violet).

INS spectra of Tb^{D} at $\lambda=4.74$ (left) and $\lambda=$ $2.37 \AA$ (right) at 30 K .

Vonci et al. Chem. Commun. (2015)

PELICAN Capabilities

- Gas-loading
- Humidity variation
- Polarised neutrons
- Magnetic field
- Dilution temperatures

4. Backscattering Spectroscopy

Backscattering Spectrometer

- Premonochromator - defines initial wavelength of neutrons
- Chopper - pulses the beam
- Deflecting chopper - sends neutrons to monochromator
- Doppler-driven monochromator - varies E_{i} (indirect geometry)
- Sample - scatters the beam
- Analysers - backscatter only neutrons with certain $E=E_{f}$
- Detectors - only detect neutrons reflected by the analysers

Indirect geometry spectrometer

- RMIT

UNIVERSITY

EMU

EMU

EMU

Vertical detectors: $12^{\circ}<\phi<155^{\circ}=>0.21 \AA^{-1}<Q<1.96 \AA^{-1}$
Horizontal detectors: $0^{\circ}<\phi<12^{\circ} \Rightarrow 0.01 \AA^{-1}<Q<0.20 \AA^{-1}$

EMU Distance/Time Diagram

Data from EMU

Inelastic spectrum of m-Xylene measured

 on EMU at 3K

Science on EMU: Case study 1

- Unfrozen Water In Na-montmorillonite

Science on EMU: Case study 2

- Dynamics of encapsulated Hepatitis B surface Antigen

Rasmussen et al. EPJ Special Topics (Accepted, 2018)

Science on EMU: Case study 3

- QENS study of propane diffusion in gas hydrates
- Hydration water dynamics on rutile nanoparticles

EMU Capabilities

Science

- Dynamics of soft condensed matter such as polymers, proteins, biological membranes and gels
- Local and long range diffusion of liquids, solutions and confined systems
- Properties of quantum liquids, Fermi and nonFermi systems

Sample Environment

- Gas-loading
- Standard cryostat temperatures
- Dilution temperatures

Acknowledgments

PELICAN
EMU

Dehong Yu

Richard Mole

Nicolas de Souza

Alice Klapproth

$\mathrm{R}^{-} \boldsymbol{y} \sim \mathrm{in}$

Thank you for your attention!

