Type : Oral

FeMn₃Ge₂Sn₇O₁₆ : a Spin-liquid Candidate with a Perfectly Isotropic 2-D Kagomé Lattice

Tuesday, 3 December 2019 14:30 (15)

The compound Fe₄Si₂Sn₇O₁₆ has a hitherto unique crystal structure, consisting of ionic oxide layers based on edge-sharing FeO₆ and Sn⁴⁺O₆ octahedra alternating with layers of intermetallic character based on FeSn₆²⁺ octahedra, separated by covalent SiO₄ tetrahedra. The ionic layers contain kagomé lattices of magnetic Fe²⁺ cations (octahedral crystal field, high-spin [HS] d⁶, S = 2) with perfect trigonal symmetry; while the intermetallic layers are non-magnetic because the Fe²⁺ is in the low-spin (S = 0) state. The formula is more correctly written as Fe₄Si₂Sn₇O₁₆ to differentiate the one LS-Fe²⁺ per formula unit in the intermetallic layer from the three HS-Fe²⁺ per formula unit in the kagomé oxide layer.

Fe₄Si₂Sn₇O₁₆ also has a unique magnetic ground state below a Néel ordering temperature $T_N = 3.5$ K, in which the spins on 2/3 of the Fe²⁺ sites in the kagomé oxide layers order antiferromagnetically, while 1/3 remain disordered and fluctuating down to at least 0.1 K. The nature and origin of this unique "striped" partial spin-liquid state is unclear. The fact that it breaks trigonal symmetry, which the more conventional q = 0 or $\sqrt{3} \times \sqrt{3}$ kagomé states would not, raises the possibility that the anisotropic distribution of the 6 unpaired spins on HS-Fe²⁺ ($t_{2g}^4 e_g^2$) plays a role. To test this possibility, we have now synthesised an isotropic analogue with a kagomé lattice of HS Mn²⁺ ($t_{2g}^3 e_g^2$), by co-substituting Ge⁴⁺ for Si⁴⁺ in the bridging/stannite layers to match the lattice dimensions between layers.

We found that $FeMn_3Ge_2Sn_7O_{16}$ has the same "striped" magnetic ground state as $Fe_4Si_2Sn_7O_{16}$, in the same temperature range, ruling out this explanation. However, the zero-field striped structure is collinear for $FeMn_3Ge_2Sn_7O_{16}$ vs. non-collinear for $Fe_4Si_2Sn_7O_{16}$, which may indeed be a consequence of the change in anisotropy on the magnetic kagomé site, and suggests that $FeMn_3Ge_2Sn_7O_{16}$ is an even more ideal spinliquid candidate than $Fe_4Si_2Sn_7O_{16}$. We also found that an external applied magnetic field lifts the degeneracy on the disordered site, giving rise to another ordered magnetic structure never before observed nor predicted on a kagomé lattice.

Speakers Gender

Male

Travel Funding

No

Level of Expertise

Experienced Researcher

Do yo wish to take part in the poster slam

No

Primary author(s): LING, Chris (University of Sydney); SOEHNEL, Tilo (The University of Auckland); VELLA, Joseph (The University of Auckland); ALLISON, Morgan (The University of Sydney); AVDEEV, Max (Australian Nuclear Science and Technology Organisation, Australian Centre for Neutron Scattering); Prof. SCHMID, Siegbert (The University of Sydney)

Presenter(s): LING, Chris (University of Sydney)

Session Classification : Session 21

Track Classification : Emergent Physics